"Pointsource" delivery of a photosensitizer drug and singlet oxygen: eradication of glioma cells in vitro.

نویسندگان

  • Ashwini A Ghogare
  • Imran Rizvi
  • Tayyaba Hasan
  • Alexander Greer
چکیده

We describe a pointsource sensitizer-tipped microoptic device for the eradication of glioma U87 cells. The device has a mesoporous fluorinated silica tip which emits singlet oxygen molecules and small quantities of pheophorbide sensitizer for additional production of singlet oxygen in the immediate vicinity. The results show that the device surges in sensitizer release and photokilling with higher rates about midway through the reaction. This was attributed to a self-amplified autocatalytic reaction where released sensitizer in the extracellular matrix provides positive feedback to assist in the release of additional sensitizer. The photokilling of the glioma cells was analyzed by global toxicity and live/dead assays, where a killing radius around the tip with ~0.3 mm precision was achieved. The implication of these results for a new PDT tool of hard-to-resect tumors, e.g. in the brain, is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Photophysics and PDT Evaluation of Mono-, Di-, Tri- and Hexa-PEG Chlorins for Pointsource Photodynamic Therapy.

Pointsource photodynamic therapy (PSPDT) is a newly developed fiber optic method aimed at the delivery of photosensitizer, light and oxygen to a diseased site. Because of a need for developing photosensitizers with desirable properties for PSPDT, we have carried out a synthetic, photophysical and phototoxicity study on a series of PEGylated sensitizers. Chlorin and pheophorbide sensitizers were...

متن کامل

SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin

Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...

متن کامل

SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin

Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...

متن کامل

Protein-based nanotechnology: antibody conjugated with photosensitizer in targeted anticancer photoimmunotherapy.

Photodynamic therapy (PDT) is a minimally invasive cancer therapy that depends on the buildup of a photosensitizing drug within targeted tissue. The photosensitizer is subsequently activated by light of a specific wavelength, resulting in destruction of the targeted tissue by free radicals or singlet oxygen. Successful treatment requires delivery of critical amounts of drug into the cancerous t...

متن کامل

Synthesis and Photosensitizing Properties of an Activatable Phthalocyanine-Subphthalocyanine Triad

In this article, we describe a photosensitizer (PS) whose ability to generate singlet oxygen (1O2) and fluorescence emission has been designed as tumor responsive. More specifically, the PS consists of a silicon phthalocyanine (SiPc) core, axially substituted with two subphthalocyanine (SubPc) units, covalently linked by a disulfide linker, which is cleavable in the presence of a strong reducin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemistry and photobiology

دوره 90 5  شماره 

صفحات  -

تاریخ انتشار 2014